# Web Streams API > Stability: 1 - Experimental An implementation of the [WHATWG Streams Standard][]. ```mjs import { ReadableStream, WritableStream, TransformStream, } from 'node:stream/web'; ``` ```cjs const { ReadableStream, WritableStream, TransformStream, } = require('stream/web'); ``` ## Overview The [WHATWG Streams Standard][] (or "web streams") defines an API for handling streaming data. It is similar to the Node.js [Streams][] API but emerged later and has become the "standard" API for streaming data across many JavaScript environments. There are three primary types of objects * `ReadableStream` - Represents a source of streaming data. * `WritableStream` - Represents a destination for streaming data. * `TransformStream` - Represents an algorithm for transforming streaming data. ### Example `ReadableStream` This example creates a simple `ReadableStream` that pushes the current `performance.now()` timestamp once every second forever. An async iterable is used to read the data from the stream. ```mjs import { ReadableStream } from 'node:stream/web'; import { setInterval as every } from 'node:timers/promises'; import { performance } from 'node:perf_hooks'; const SECOND = 1000; const stream = new ReadableStream({ async start(controller) { for await (const _ of every(SECOND)) controller.enqueue(performance.now()); } }); for await (const value of stream) console.log(value); ``` ```cjs const { ReadableStream } = require('stream/web'); const { setInterval: every } = require('timers/promises'); const { performance } = require('perf_hooks'); const SECOND = 1000; const stream = new ReadableStream({ async start(controller) { for await (const _ of every(SECOND)) controller.enqueue(performance.now()); } }); (async () => { for await (const value of stream) console.log(value); })(); ``` ## API ### Class: `ReadableStream` <!-- YAML added: REPLACEME --> #### `new ReadableStream([underlyingSource [, strategy]])` <!-- YAML added: REPLACEME --> <!--lint disable maximum-line-length remark-lint--> * `underlyingSource` {Object} * `start` {Function} A user-defined function that is invoked immediately when the `ReadableStream` is created. * `controller` {ReadableStreamDefaultController|ReadableByteStreamController} * Returns: `undefined` or a promise fulfilled with `undefined`. * `pull` {Function} A user-defined function that is called repeatedly when the `ReadableStream` internal queue is not full. The operation may be sync or async. If async, the function will not be called again until the previously returned promise is fulfilled. * `controller` {ReadableStreamDefaultController|ReadableByteStreamController} * Returns: A promise fulfilled with `undefined`. * `cancel` {Function} A user-defined function that is called when the `ReadableStream` is canceled. * `reason` {any} * Returns: A promise fulfilled with `undefined`. * `type` {string} Must be `'bytes'` or `undefined`. * `autoAllocateChunkSize` {number} Used only when `type` is equal to `'bytes'`. * `strategy` {Object} * `highWaterMark` {number} The maximum internal queue size before backpressure is applied. * `size` {Function} A user-defined function used to identify the size of each chunk of data. * `chunk` {any} * Returns: {number} <!--lint enable maximum-line-length remark-lint--> #### `readableStream.locked` <!-- YAML added: REPLACEME --> * Type: {boolean} Set to `true` if there is an active reader for this {ReadableStream}. The `readableStream.locked` property is `false` by default, and is switch to `true` while there is an active reader consuming the stream's data. #### `readableStream.cancel([reason])` <!-- YAML added: REPLACEME --> * `reason` {any} * Returns: A promise fulfilled with `undefined` once cancelation has been completed. #### `readableStream.getReader([options])` <!-- YAML added: REPLACEME --> * `options` {Object} * `mode` {string} `'byob'` or `undefined` * Returns: {ReadableStreamDefaultReader|ReadableStreamBYOBReader} ```mjs import { ReadableStream } from 'node:stream/web'; const stream = new ReadableStream(); const reader = stream.getReader(); console.log(await reader.read()); ``` ```cjs const { ReadableStream } = require('stream/web'); const stream = new ReadableStream(); const reader = stream.getReader(); reader.read().then(console.log); ``` Causes the `readableStream.locked` to be `true`. #### `readableStream.pipeThrough(transform[, options])` <!-- YAML added: REPLACEME --> * `transform` {Object} * `readable` {ReadableStream} The `ReadableStream` to which `transform.writable` will push the potentially modified data is receives from this `ReadableStream`. * `writable` {WritableStream} The `WritableStream` to which this `ReadableStream`'s data will be written. * `options` {Object} * `preventAbort` {boolean} When `true`, errors in this `ReadableStream` will not cause `transform.writable` to be aborted. * `preventCancel` {boolean} When `true`, errors in the destination `transform.writable` is not cause this `ReadableStream` to be canceled. * `preventClose` {boolean} When `true`, closing this `ReadableStream` will no cause `transform.writable` to be closed. * `signal` {AbortSignal} Allows the transfer of data to be canceled using an {AbortController}. * Returns: {ReadableStream} From `transform.readable`. Connects this {ReadableStream} to the pair of {ReadableStream} and {WritableStream} provided in the `transform` argument such that the data from this {ReadableStream} is written in to `transform.writable`, possibly transformed, then pushed to `transform.readable`. Once the pipeline is configured, `transform.readable` is returned. Causes the `readableStream.locked` to be `true` while the pipe operation is active. ```mjs import { ReadableStream, TransformStream, } from 'node:stream/web'; const stream = new ReadableStream({ start(controller) { controller.enqueue('a'); }, }); const transform = new TransformStream({ transform(chunk, controller) { controller.enqueue(chunk.toUpperCase()); } }); const transformedStream = stream.pipeThrough(transform); for await (const chunk of transformedStream) console.log(chunk); ``` ```cjs const { ReadableStream, TransformStream, } = require('stream/web'); const stream = new ReadableStream({ start(controller) { controller.enqueue('a'); }, }); const transform = new TransformStream({ transform(chunk, controller) { controller.enqueue(chunk.toUpperCase()); } }); const transformedStream = stream.pipeThrough(transform); (async () => { for await (const chunk of transformedStream) console.log(chunk); })(); ``` #### `readableStream.pipeTo(destination, options)` <!-- YAML added: REPLACEME --> * `destination` {WritableStream} A {WritableStream} to which this `ReadableStream`'s data will be written. * `options` {Object} * `preventAbort` {boolean} When `true`, errors in this `ReadableStream` will not cause `transform.writable` to be aborted. * `preventCancel` {boolean} When `true`, errors in the destination `transform.writable` is not cause this `ReadableStream` to be canceled. * `preventClose` {boolean} When `true`, closing this `ReadableStream` will no cause `transform.writable` to be closed. * `signal` {AbortSignal} Allows the transfer of data to be canceled using an {AbortController}. * Returns: A promise fulfilled with `undefined` Causes the `readableStream.locked` to be `true` while the pipe operation is active. #### `readableStream.tee()` <!-- YAML added: REPLACEME --> * Returns: {ReadableStream[]} Returns a pair of new {ReadableStream} instances to which this `ReadableStream`'s data will be forwarded. Each will receive the same data. Causes the `readableStream.locked` to be `true`. #### `readableStream.values([options])` <!-- YAML added: REPLACEME --> * `options` {Object} * `preventCancel` {boolean} When `true`, prevents the {ReadableStream} from being closed when the async iterator abruptly terminates. **Defaults**: `false` Creates and returns an async iterator usable for consuming this `ReadableStream`'s data. Causes the `readableStream.locked` to be `true` while the async iterator is active. ```mjs import { Buffer } from 'node:buffer'; const stream = new ReadableStream(getSomeSource()); for await (const chunk of stream.values({ preventCancel: true })) console.log(Buffer.from(chunk).toString()); ``` #### Async Iteration The {ReadableStream} object supports the async iterator protocol using `for await` syntax. ```mjs import { Buffer } from 'buffer'; const stream = new ReadableStream(getSomeSource()); for await (const chunk of stream) console.log(Buffer.from(chunk).toString()); ``` The async iterator will consume the {ReadableStream} until it terminates. By default, if the async iterator exits early (via either a `break`, `return`, or a `throw`), the {ReadableStream} will be closed. To prevent automatic closing of the {ReadableStream}, use the `readableStream.values()` method to acquire the async iterator and set the `preventCancel` option to `true`. The {ReadableStream} must not be locked (that is, it must not have an existing active reader). During the async iteration, the {ReadableStream} will be locked. #### Transfering with `postMessage()` A {ReadableStream} instance can be transferred using a {MessagePort}. ```js const stream = new ReadableStream(getReadableSourceSomehow()); const { port1, port2 } = new MessageChannel(); port1.onmessage = ({ data }) => { data.getReader().read().then((chunk) => { console.log(chunk); }); }; port2.postMessage(stream, [stream]); ``` ### Class: `ReadableStreamDefaultReader` <!-- YAML added: REPLACEME --> By default, calling `readableStream.getReader()` with no arguments will return an instance of `ReadableStreamDefaultReader`. The default reader treats the chunks of data passed through the stream as opaque values, which allows the {ReadableStream} to work with generally any JavaScript value. #### `new ReadableStreamDefaultReader(stream)` <!-- YAML added: REPLACEME --> * `stream` {ReadableStream} Creates a new {ReadableStreamDefaultReader} that is locked to the given {ReadableStream}. #### `readableStreamDefaultReader.cancel([reason])` <!-- YAML added: REPLACEME --> * `reason` {any} * Returns: A promise fulfilled with `undefined`. Cancels the {ReadableStream} and returns a promise that is fulfilled when the underlying stream has been canceled. #### `readableStreamDefaultReader.closed` <!-- YAML added: REPLACEME --> * Type: {Promise} Fulfilled with `undefined` when the associated {ReadableStream} is closed or this reader's lock is released. #### `readableStreamDefaultReader.read()` <!-- YAML added: REPLACEME --> * Returns: A promise fulfilled with an object: * `value` {ArrayBuffer} * `done` {boolean} Requests the next chunk of data from the underlying {ReadableStream} and returns a promise that is fulfilled with the data once it is available. #### `readableStreamDefaultReader.releaseLock()` <!-- YAML added: REPLACEME --> Releases this reader's lock on the underlying {ReadableStream}. ### Class: `ReadableStreamBYOBReader` <!-- YAML added: REPLACEME --> The `ReadableStreamBYOBReader` is an alternative consumer for byte-oriented {ReadableStream}'s (those that are created with `underlyingSource.type` set equal to `'bytes`` when the `ReadableStream` was created). The `BYOB` is short for "bring your own buffer". This is a pattern that allows for more efficient reading of byte-oriented data that avoids extraneous copying. ```mjs import { open } from 'node:fs/promises'; import { ReadableStream } from 'node:stream/web'; import { Buffer } from 'node:buffer'; class Source { type = 'bytes'; autoAllocateChunkSize = 1024; async start(controller) { this.file = await open(new URL(import.meta.url)); this.controller = controller; } async pull(controller) { const view = controller.byobRequest?.view; const { bytesRead, } = await this.file.read({ buffer: view, offset: view.byteOffset, length: view.byteLength }); if (bytesRead === 0) { await this.file.close(); this.controller.close(); } controller.byobRequest.respond(bytesRead); } } const stream = new ReadableStream(new Source()); async function read(stream) { const reader = stream.getReader({ mode: 'byob' }); const chunks = []; let result; do { result = await reader.read(Buffer.alloc(100)); if (result.value !== undefined) chunks.push(Buffer.from(result.value)); } while (!result.done); return Buffer.concat(chunks); } const data = await read(stream); console.log(Buffer.from(data).toString()); ``` #### `new ReadableStreamBYOBReader(stream)` <!-- YAML added: REPLACEME --> * `stream` {ReadableStream} Creates a new `ReadableStreamBYOBReader` that is locked to the given {ReadableStream}. #### `readableStreamBYOBReader.cancel([reason])` <!-- YAML added: REPLACEME --> * `reason` {any} * Returns: A promise fulfilled with `undefined`. Cancels the {ReadableStream} and returns a promise that is fulfilled when the underlying stream has been canceled. #### `readableStreamBYOBReader.closed` <!-- YAML added: REPLACEME --> * Type: {Promise} Fulfilled with `undefined` when the associated {ReadableStream} is closed or this reader's lock is released. #### `readableStreamBYOBReader.read(view)` <!-- YAML added: REPLACEME --> * `view` {Buffer|TypedArray|DataView} * Returns: A promise fulfilled with an object: * `value` {ArrayBuffer} * `done` {boolean} Requests the next chunk of data from the underlying {ReadableStream} and returns a promise that is fulfilled with the data once it is available. Do not pass a pooled {Buffer} object instance in to this method. Pooled `Buffer` objects are created using `Buffer.allocUnsafe()`, or `Buffer.from()`, or are often returned by various `fs` module callbacks. These types of `Buffer`s use a shared underlying {ArrayBuffer} object that contains all of the data from all of the pooled `Buffer` instances. When a `Buffer`, {TypedArray}, or {DataView} is passed in to `readableStreamBYOBReader.read()`, the view's underlying `ArrayBuffer` is *detached*, invalidating all existing views that may exist on that `ArrayBuffer`. This can have disasterous consequences for your application. #### `readableStreamBYOBReader.releaseLock()` <!-- YAML added: REPLACEME --> Releases this reader's lock on the underlying {ReadableStream}. ### Class: `ReadableStreamDefaultController` <!-- YAML added: REPLACEME --> Every {ReadableStream} has a controller that is responsible for the internal state and management of the stream's queue. The `ReadableStreamDefaultController` is the default controller implementation for `ReadableStream`s that are not byte-oriented. #### `readableStreamDefaultController.close()` <!-- YAML added: REPLACEME --> Closes the {ReadableStream} to which this controller is associated. #### `readableStreamDefaultController.desiredSize` <!-- YAML added: REPLACEME --> * Type: {number} Returns the amount of data remaining to fill the {ReadableStream}'s queue. #### `readableStreamDefaultController.enqueue(chunk)` <!-- YAML added: REPLACEME --> * `chunk` {any} Appends a new chunk of data to the {ReadableStream}'s queue. #### `readableStreamDefaultController.error(error)` <!-- YAML added: REPLACEME --> * `error` {any} Signals an error that causes the {ReadableStream} to error and close. ### Class: `ReadableByteStreamController` <!-- YAML added: REPLACEME --> Every {ReadableStream} has a controller that is responsible for the internal state and management of the stream's queue. The `ReadableByteStreamController` is for byte-oriented `ReadableStream`s. #### `readableByteStreamController.byobRequest` <!-- YAML added: REPLACEME --> * Type: {ReadableStreamBYOBRequest} #### `readableByteStreamController.close()` <!-- YAML added: REPLACEME --> Closes the {ReadableStream} to which this controller is associated. #### `readableByteStreamController.desiredSize` <!-- YAML added: REPLACEME --> * Type: {number} Returns the amount of data remaining to fill the {ReadableStream}'s queue. #### `readableByteStreamController.enqueue(chunk)` <!-- YAML added: REPLACEME --> * `chunk`: {Buffer|TypedArray|DataView} Appends a new chunk of data to the {ReadableStream}'s queue. #### `readableByteStreamController.error(error)` <!-- YAML added: REPLACEME --> * `error` {any} Signals an error that causes the {ReadableStream} to error and close. ### Class: `ReadableStreamBYOBRequest` <!-- YAML added: REPLACEME --> When using `ReadableByteStreamController` in byte-oriented streams, and when using the `ReadableStreamBYOBReader`, the `readableByteStreamController.byobRequest` property provides access to a `ReadableStreamBYOBRequest` instance that represents the current read request. The object is used to gain access to the `ArrayBuffer`/`TypedArray` that has been provided for the read request to fill, and provides methods for signaling that the data has been provided. #### `readableStreamBYOBRequest.respond(bytesWritten)` <!-- YAML added: REPLACEME --> * `bytesWritten` {number} Signals that a `bytesWritten` number of bytes have been written to `readableStreamBYOBRequest.view`. #### `readableStreamBYOBRequest.respondWithNewView(view)` <!-- YAML added: REPLACEME --> * `view` {Buffer|TypedArray|DataView} Signals that the request has been fulfilled with bytes written to a new `Buffer`, `TypedArray`, or `DataView`. #### `readableStreamBYOBRequest.view` <!-- YAML added: REPLACEME --> * Type: {Buffer|TypedArray|DataView} ### Class: `WritableStream` <!-- YAML added: REPLACEME --> The `WritableStream` is a destination to which stream data is sent. ```mjs import { WritableStream } from 'node:stream/web'; const stream = new WritableStream({ write(chunk) { console.log(chunk); } }); await stream.getWriter().write('Hello World'); ``` #### `new WritableStream([underlyingSink[, strategy]])` <!-- YAML added: REPLACEME --> * `underlyingSink` {Object} * `start` {Function} A user-defined function that is invoked immediately when the `WritableStream` is created. * `controller` {WritableStreamDefaultController} * Returns: `undefined` or a promise fulfilled with `undefined`. * `write` {Function} A user-defined function that is invoked when a chunk of data has been written to the `WritableStream`. * `chunk` {any} * `controller` {WritableStreamDefaultController} * Returns: A promise fulfilled with `undefined`. * `close` {Function} A user-defined function that is called when the `WritableStream` is closed. * Returns: A promise fulfilled with `undefined`. * `abort` {Function} A user-defined function that is called to abruptly close the `WritableStream`. * `reason` {any} * Returns: A promise fulfilled with `undefined`. * `type` {any} The `type` option is reserved for future use and *must* be undefined. * `strategy` {Object} * `highWaterMark` {number} The maximum internal queue size before backpressure is applied. * `size` {Function} A user-defined function used to identify the size of each chunk of data. * `chunk` {any} * Returns: {number} #### `writableStream.abort([reason])` <!-- YAML added: REPLACEME --> * `reason` {any} * Returns: A promise fulfilled with `undefined`. Abruptly terminates the `WritableStream`. All queued writes will be canceled with their associated promises rejected. #### `writableStream.close()` <!-- YAML added: REPLACEME --> * Returns: A promise fulfilled with `undefined`. Closes the `WritableStream` when no additional writes are expected. #### `writableStream.getWriter()` <!-- YAML added: REPLACEME --> * Returns: {WritableStreamDefaultWriter} Creates and creates a new writer instance that can be used to write data into the `WritableStream`. #### `writableStream.locked` <!-- YAML added: REPLACEME --> * Type: {boolean} The `writableStream.locked` property is `false` by default, and is switched to `true` while there is an active writer attached to this `WritableStream`. #### Transfering with postMessage() A {WritableStream} instance can be transferred using a {MessagePort}. ```js const stream = new WritableStream(getWritableSinkSomehow()); const { port1, port2 } = new MessageChannel(); port1.onmessage = ({ data }) => { data.getWriter().write('hello'); }; port2.postMessage(stream, [stream]); ``` ### Class: `WritableStreamDefaultWriter` <!-- YAML added: REPLACEME --> #### `new WritableStreamDefaultWriter(stream)` <!-- YAML added: REPLACEME --> * `stream` {WritableStream} Creates a new `WritableStreamDefaultWriter` that is locked to the given `WritableStream`. #### `writableStreamDefaultWriter.abort([reason])` <!-- YAML added: REPLACEME --> * `reason` {any} * Returns: A promise fulfilled with `undefined`. Abruptly terminates the `WritableStream`. All queued writes will be canceled with their associated promises rejected. #### `writableStreamDefaultWriter.close()` <!-- YAML added: REPLACEME --> * Returns: A promise fulfilled with `undefined`. Closes the `WritableStream` when no additional writes are expected. #### `writableStreamDefaultWriter.closed` <!-- YAML added: REPLACEME --> * Type: A promise that is fulfilled with `undefined` when the associated {WritableStream} is closed or this writer's lock is released. #### `writableStreamDefaultWriter.desiredSize` <!-- YAML added: REPLACEME --> * Type: {number} The amount of data required to fill the {WritableStream}'s queue. #### `writableStreamDefaultWriter.ready` <!-- YAML added: REPLACEME --> * type: A promise that is fulfilled with `undefined` when the writer is ready to be used. #### `writableStreamDefaultWriter.releaseLock()` <!-- YAML added: REPLACEME --> Releases this writer's lock on the underlying {ReadableStream}. #### `writableStreamDefaultWriter.write([chunk])` <!-- YAML added: REPLACEME --> * `chunk`: {any} * Returns: A promise fulfilled with `undefined`. Appends a new chunk of data to the {WritableStream}'s queue. ### Class: `WritableStreamDefaultController` <!-- YAML added: REPLACEME --> The `WritableStreamDefaultController` manage's the {WritableStream}'s internal state. #### `writableStreamDefaultController.abortReason` * Type: {any} The `reason` value passed to `writableStream.abort()`. #### `writableStreamDefaultController.error(error)` <!-- YAML added: REPLACEME --> * `error` {any} Called by user-code to signal that an error has occurred while processing the `WritableStream` data. When called, the {WritableStream} will be aborted, with currently pending writes canceled. #### `writableStreamDefaultController.signal` * Type: {AbortSignal} An `AbortSignal` that can be used to cancel pending write or close operations when a {WritableStream} is aborted. ### Class: `TransformStream` <!-- YAML added: REPLACEME --> A `TransformStream` consists of a {ReadableStream} and a {WritableStream} that are connected such that the data written to the `WritableStream` is received, and potentially transformed, before being pushed into the `ReadableStream`'s queue. ```mjs import { TransformStream } from 'node:stream/web'; const transform = new TransformStream({ transform(chunk, controller) { controller.enqueue(chunk.toUpperCase()); } }); await Promise.all([ transform.writable.getWriter().write('A'), transform.readable.getReader().read(), ]); ``` #### `new TransformStream([transformer[, writableStrategy[, readableStrategy]]])` <!-- YAML added: REPLACEME --> * `transformer` {Object} * `start` {Function} A user-defined function that is invoked immediately when the `TransformStream` is created. * `controller` {TransformStreamDefaultController} * Returns: `undefined` or a promise fulfilled with `undefined` * `transform` {Function} A user-defined function that receives, and potentially modifies, a chunk of data written to `transformStream.writable`, before forwarding that on to `transformStream.readable`. * `chunk` {any} * `controller` {TransformStreamDefaultController} * Returns: A promise fulfilled with `undefined`. * `flush` {Function} A user-defined function that is called immediately before the writable side of the `TransformStream` is closed, signaling the end of the transformation process. * `controller` {TransformStreamDefaultController} * Returns: A promise fulfilled with `undefined`. * `readableType` {any} the `readableType` option is reserved for future use and *must* be `undefined. * `writableType` {any} the `writableType` option is reserved for future use and *must* be `undefined. * `writableStrategy` {Object} * `highWaterMark` {number} The maximum internal queue size before backpressure is applied. * `size` {Function} A user-defined function used to identify the size of each chunk of data. * `chunk` {any} * Returns: {number} * `readableStrategy` {Object} * `highWaterMark` {number} The maximum internal queue size before backpressure is applied. * `size` {Function} A user-defined function used to identify the size of each chunk of data. * `chunk` {any} * Returns: {number} #### `transformStream.readable` <!-- YAML added: REPLACEME --> * Type: {ReadableStream} #### `transformStream.writable` <!-- YAML added: REPLACEME --> * Type: {WritableStream} #### Transfering with postMessage() A {TransformStream} instance can be transferred using a {MessagePort}. ```js const stream = new TransformStream(); const { port1, port2 } = new MessageChannel(); port1.onmessage = ({ data }) => { const { writable, readable } = data; // ... }; port2.postMessage(stream, [stream]); ``` ### Class: `TransformStreamDefaultController` <!-- YAML added: REPLACEME --> The `TransformStreamDefaultController` manages the internal state of the `TransformStream`. #### `transformStreamDefaultController.desiredSize` <!-- YAML added: REPLACEME --> * Type: {number} The amount of data required to fill the readable side's queue. #### `transformStreamDefaultController.enqueue([chunk])` <!-- YAML added: REPLACEME --> * `chunk` {any} Appends a chunk of data to the readable side's queue. #### `transformStreamDefaultController.error([reason])` <!-- YAML added: REPLACEME --> * `reason` {any} Signals to both the readable and writable side that an error has occured while processing the transform data, causing both sides to be abruptly closed. #### `transformStreamDefaultController.terminate()` <!-- YAML added: REPLACEME --> Closes the readable side of the transport and causes the writable side to be abruptly closed with an error. ### Class: `ByteLengthQueuingStrategy` <!-- YAML added: REPLACEME --> #### `new ByteLengthQueuingStrategy(options)` <!-- YAML added: REPLACEME --> * `options` {Object} * `highWaterMark` {number} #### `byteLengthQueuingStrategy.highWaterMark` <!-- YAML added: REPLACEME --> * Type: {number} #### `byteLengthQueuingStrategy.size` <!-- YAML added: REPLACEME --> * Type: {Function} * `chunk` {any} * Returns: {number} ### Class: `CountQueuingStrategy` <!-- YAML added: REPLACEME --> #### `new CountQueuingStrategy(options)` <!-- YAML added: REPLACEME --> * `options` {Object} * `highWaterMark` {number} #### `countQueuingStrategy.highWaterMark` <!-- YAML added: REPLACEME --> * Type: {number} #### `countQueuingStrategy.size` <!-- YAML added: REPLACEME --> * Type: {Function} * `chunk` {any} * Returns: {number} [Streams]: stream.md [WHATWG Streams Standard]: https://streams.spec.whatwg.org/