- Assertion Testing
- Async Hooks
- Buffer
- C++ Addons
- C/C++ Addons - N-API
- Child Processes
- Cluster
- Command Line Options
- Console
- Crypto
- Debugger
- Deprecated APIs
- DNS
- Domain
- ECMAScript Modules
- Errors
- Events
- File System
- Globals
- HTTP
- HTTP/2
- HTTPS
- Inspector
- Internationalization
- Modules
- Net
- OS
- Path
- Performance Hooks
- Process
- Punycode
- Query Strings
- Readline
- REPL
- Stream
- String Decoder
- Timers
- TLS/SSL
- Tracing
- TTY
- UDP/Datagram
- URL
- Utilities
- V8
- VM
- ZLIB
Node.js v10.0.0-test2017110118df171307 Documentation
Table of Contents
- Child Process
- Asynchronous Process Creation
- Synchronous Process Creation
- Class: ChildProcess
- Event: 'close'
- Event: 'disconnect'
- Event: 'error'
- Event: 'exit'
- Event: 'message'
- subprocess.channel
- subprocess.connected
- subprocess.disconnect()
- subprocess.kill([signal])
- subprocess.killed
- subprocess.pid
- subprocess.send(message[, sendHandle[, options]][, callback])
- subprocess.stderr
- subprocess.stdin
- subprocess.stdio
- subprocess.stdout
maxBuffer
and Unicode- Shell Requirements
- Default Windows Shell
Child Process#
The child_process
module provides the ability to spawn child processes in
a manner that is similar, but not identical, to popen(3). This capability
is primarily provided by the child_process.spawn()
function:
const { spawn } = require('child_process');
const ls = spawn('ls', ['-lh', '/usr']);
ls.stdout.on('data', (data) => {
console.log(`stdout: ${data}`);
});
ls.stderr.on('data', (data) => {
console.log(`stderr: ${data}`);
});
ls.on('close', (code) => {
console.log(`child process exited with code ${code}`);
});
By default, pipes for stdin
, stdout
and stderr
are established between
the parent Node.js process and the spawned child. It is possible to stream data
through these pipes in a non-blocking way. Note, however, that some programs
use line-buffered I/O internally. While that does not affect Node.js, it can
mean that data sent to the child process may not be immediately consumed.
The child_process.spawn()
method spawns the child process asynchronously,
without blocking the Node.js event loop. The child_process.spawnSync()
function provides equivalent functionality in a synchronous manner that blocks
the event loop until the spawned process either exits or is terminated.
For convenience, the child_process
module provides a handful of synchronous
and asynchronous alternatives to child_process.spawn()
and
child_process.spawnSync()
. Note that each of these alternatives are
implemented on top of child_process.spawn()
or child_process.spawnSync()
.
child_process.exec()
: spawns a shell and runs a command within that shell, passing thestdout
andstderr
to a callback function when complete.child_process.execFile()
: similar tochild_process.exec()
except that it spawns the command directly without first spawning a shell.child_process.fork()
: spawns a new Node.js process and invokes a specified module with an IPC communication channel established that allows sending messages between parent and child.child_process.execSync()
: a synchronous version ofchild_process.exec()
that will block the Node.js event loop.child_process.execFileSync()
: a synchronous version ofchild_process.execFile()
that will block the Node.js event loop.
For certain use cases, such as automating shell scripts, the synchronous counterparts may be more convenient. In many cases, however, the synchronous methods can have significant impact on performance due to stalling the event loop while spawned processes complete.
Asynchronous Process Creation#
The child_process.spawn()
, child_process.fork()
, child_process.exec()
,
and child_process.execFile()
methods all follow the idiomatic asynchronous
programming pattern typical of other Node.js APIs.
Each of the methods returns a ChildProcess
instance. These objects
implement the Node.js EventEmitter
API, allowing the parent process to
register listener functions that are called when certain events occur during
the life cycle of the child process.
The child_process.exec()
and child_process.execFile()
methods additionally
allow for an optional callback
function to be specified that is invoked
when the child process terminates.
Spawning .bat
and .cmd
files on Windows#
The importance of the distinction between child_process.exec()
and
child_process.execFile()
can vary based on platform. On Unix-type operating
systems (Unix, Linux, macOS) child_process.execFile()
can be more efficient
because it does not spawn a shell. On Windows, however, .bat
and .cmd
files are not executable on their own without a terminal, and therefore cannot
be launched using child_process.execFile()
. When running on Windows, .bat
and .cmd
files can be invoked using child_process.spawn()
with the shell
option set, with child_process.exec()
, or by spawning cmd.exe
and passing
the .bat
or .cmd
file as an argument (which is what the shell
option and
child_process.exec()
do). In any case, if the script filename contains
spaces it needs to be quoted.
// On Windows Only ...
const { spawn } = require('child_process');
const bat = spawn('cmd.exe', ['/c', 'my.bat']);
bat.stdout.on('data', (data) => {
console.log(data.toString());
});
bat.stderr.on('data', (data) => {
console.log(data.toString());
});
bat.on('exit', (code) => {
console.log(`Child exited with code ${code}`);
});
// OR...
const { exec } = require('child_process');
exec('my.bat', (err, stdout, stderr) => {
if (err) {
console.error(err);
return;
}
console.log(stdout);
});
// Script with spaces in the filename:
const bat = spawn('"my script.cmd"', ['a', 'b'], { shell: true });
// or:
exec('"my script.cmd" a b', (err, stdout, stderr) => {
// ...
});
child_process.exec(command[, options][, callback])#
command
<string> The command to run, with space-separated arguments.options
<Object>cwd
<string> Current working directory of the child process.env
<Object> Environment key-value pairs.encoding
<string> Default:'utf8'
shell
<string> Shell to execute the command with. Default:'/bin/sh'
on UNIX,process.env.ComSpec
on Windows. See Shell Requirements and Default Windows Shell.timeout
<number> Default:0
maxBuffer
<number> Largest amount of data in bytes allowed on stdout or stderr. Default:200*1024
. If exceeded, the child process is terminated. See caveat atmaxBuffer
and Unicode.killSignal
<string> | <integer> Default:'SIGTERM'
uid
<number> Sets the user identity of the process (see setuid(2)).gid
<number> Sets the group identity of the process (see setgid(2)).windowsHide
<boolean> Hide the subprocess console window that would normally be created on Windows systems. Default:false
.
callback
<Function> called with the output when process terminates.- Returns: <ChildProcess>
Spawns a shell then executes the command
within that shell, buffering any
generated output. The command
string passed to the exec function is processed
directly by the shell and special characters (vary based on
shell)
need to be dealt with accordingly:
exec('"/path/to/test file/test.sh" arg1 arg2');
//Double quotes are used so that the space in the path is not interpreted as
//multiple arguments
exec('echo "The \\$HOME variable is $HOME"');
//The $HOME variable is escaped in the first instance, but not in the second
Note: Never pass unsanitised user input to this function. Any input containing shell metacharacters may be used to trigger arbitrary command execution.
const { exec } = require('child_process');
exec('cat *.js bad_file | wc -l', (error, stdout, stderr) => {
if (error) {
console.error(`exec error: ${error}`);
return;
}
console.log(`stdout: ${stdout}`);
console.log(`stderr: ${stderr}`);
});
If a callback
function is provided, it is called with the arguments
(error, stdout, stderr)
. On success, error
will be null
. On error,
error
will be an instance of Error
. The error.code
property will be
the exit code of the child process while error.signal
will be set to the
signal that terminated the process. Any exit code other than 0
is considered
to be an error.
The stdout
and stderr
arguments passed to the callback will contain the
stdout and stderr output of the child process. By default, Node.js will decode
the output as UTF-8 and pass strings to the callback. The encoding
option
can be used to specify the character encoding used to decode the stdout and
stderr output. If encoding
is 'buffer'
, or an unrecognized character
encoding, Buffer
objects will be passed to the callback instead.
The options
argument may be passed as the second argument to customize how
the process is spawned. The default options are:
const defaults = {
encoding: 'utf8',
timeout: 0,
maxBuffer: 200 * 1024,
killSignal: 'SIGTERM',
cwd: null,
env: null
};
If timeout
is greater than 0
, the parent will send the signal
identified by the killSignal
property (the default is 'SIGTERM'
) if the
child runs longer than timeout
milliseconds.
Note: Unlike the exec(3) POSIX system call, child_process.exec()
does not
replace the existing process and uses a shell to execute the command.
If this method is invoked as its util.promisify()
ed version, it returns
a Promise for an object with stdout
and stderr
properties. In case of an
error, a rejected promise is returned, with the same error
object given in the
callback, but with an additional two properties stdout
and stderr
.
For example:
const util = require('util');
const exec = util.promisify(require('child_process').exec);
async function lsExample() {
const { stdout, stderr } = await exec('ls');
console.log('stdout:', stdout);
console.log('stderr:', stderr);
}
lsExample();
child_process.execFile(file[, args][, options][, callback])#
file
<string> The name or path of the executable file to run.args
<string[]> List of string arguments.options
<Object>cwd
<string> Current working directory of the child process.env
<Object> Environment key-value pairs.encoding
<string> Default:'utf8'
timeout
<number> Default:0
maxBuffer
<number> Largest amount of data in bytes allowed on stdout or stderr. Default:200*1024
If exceeded, the child process is terminated. See caveat atmaxBuffer
and Unicode.killSignal
<string> | <integer> Default:'SIGTERM'
uid
<number> Sets the user identity of the process (see setuid(2)).gid
<number> Sets the group identity of the process (see setgid(2)).windowsHide
<boolean> Hide the subprocess console window that would normally be created on Windows systems. Default:false
.
callback
<Function> Called with the output when process terminates.- Returns: <ChildProcess>
The child_process.execFile()
function is similar to child_process.exec()
except that it does not spawn a shell. Rather, the specified executable file
is spawned directly as a new process making it slightly more efficient than
child_process.exec()
.
The same options as child_process.exec()
are supported. Since a shell is not
spawned, behaviors such as I/O redirection and file globbing are not supported.
const { execFile } = require('child_process');
const child = execFile('node', ['--version'], (error, stdout, stderr) => {
if (error) {
throw error;
}
console.log(stdout);
});
The stdout
and stderr
arguments passed to the callback will contain the
stdout and stderr output of the child process. By default, Node.js will decode
the output as UTF-8 and pass strings to the callback. The encoding
option
can be used to specify the character encoding used to decode the stdout and
stderr output. If encoding
is 'buffer'
, or an unrecognized character
encoding, Buffer
objects will be passed to the callback instead.
If this method is invoked as its util.promisify()
ed version, it returns
a Promise for an object with stdout
and stderr
properties. In case of an
error, a rejected promise is returned, with the same error
object given in the
callback, but with an additional two properties stdout
and stderr
.
const util = require('util');
const execFile = util.promisify(require('child_process').execFile);
async function getVersion() {
const { stdout } = await execFile('node', ['--version']);
console.log(stdout);
}
getVersion();
child_process.fork(modulePath[, args][, options])#
modulePath
<string> The module to run in the child.args
<Array> List of string arguments.options
<Object>cwd
<string> Current working directory of the child process.env
<Object> Environment key-value pairs.execPath
<string> Executable used to create the child process.execArgv
<Array> List of string arguments passed to the executable. Default:process.execArgv
silent
<boolean> Iftrue
, stdin, stdout, and stderr of the child will be piped to the parent, otherwise they will be inherited from the parent, see the'pipe'
and'inherit'
options forchild_process.spawn()
'sstdio
for more details. Default:false
stdio
<Array> | <string> Seechild_process.spawn()
'sstdio
. When this option is provided, it overridessilent
. If the array variant is used, it must contain exactly one item with value'ipc'
or an error will be thrown. For instance[0, 1, 2, 'ipc']
.uid
<number> Sets the user identity of the process (see setuid(2)).gid
<number> Sets the group identity of the process (see setgid(2)).
- Returns: <ChildProcess>
The child_process.fork()
method is a special case of
child_process.spawn()
used specifically to spawn new Node.js processes.
Like child_process.spawn()
, a ChildProcess
object is returned. The returned
ChildProcess
will have an additional communication channel built-in that
allows messages to be passed back and forth between the parent and child. See
subprocess.send()
for details.
It is important to keep in mind that spawned Node.js child processes are independent of the parent with exception of the IPC communication channel that is established between the two. Each process has its own memory, with their own V8 instances. Because of the additional resource allocations required, spawning a large number of child Node.js processes is not recommended.
By default, child_process.fork()
will spawn new Node.js instances using the
process.execPath
of the parent process. The execPath
property in the
options
object allows for an alternative execution path to be used.
Node.js processes launched with a custom execPath
will communicate with the
parent process using the file descriptor (fd) identified using the
environment variable NODE_CHANNEL_FD
on the child process. The input and
output on this fd is expected to be line delimited JSON objects.
Note: Unlike the fork(2) POSIX system call, child_process.fork()
does
not clone the current process.
Note: The shell
option available in child_process.spawn()
is not
supported by child_process.fork()
and will be ignored if set.
child_process.spawn(command[, args][, options])#
command
<string> The command to run.args
<Array> List of string arguments.options
<Object>cwd
<string> Current working directory of the child process.env
<Object> Environment key-value pairs.argv0
<string> Explicitly set the value ofargv[0]
sent to the child process. This will be set tocommand
if not specified.stdio
<Array> | <string> Child's stdio configuration (seeoptions.stdio
).detached
<boolean> Prepare child to run independently of its parent process. Specific behavior depends on the platform, seeoptions.detached
).uid
<number> Sets the user identity of the process (see setuid(2)).gid
<number> Sets the group identity of the process (see setgid(2)).shell
<boolean> | <string> Iftrue
, runscommand
inside of a shell. Uses'/bin/sh'
on UNIX, andprocess.env.ComSpec
on Windows. A different shell can be specified as a string. See Shell Requirements and Default Windows Shell. Default:false
(no shell).windowsHide
<boolean> Hide the subprocess console window that would normally be created on Windows systems. Default:false
.
- Returns: <ChildProcess>
The child_process.spawn()
method spawns a new process using the given
command
, with command line arguments in args
. If omitted, args
defaults
to an empty array.
Note: If the shell
option is enabled, do not pass unsanitised user input to
this function. Any input containing shell metacharacters may be used to
trigger arbitrary command execution.
A third argument may be used to specify additional options, with these defaults:
const defaults = {
cwd: undefined,
env: process.env
};
Use cwd
to specify the working directory from which the process is spawned.
If not given, the default is to inherit the current working directory.
Use env
to specify environment variables that will be visible to the new
process, the default is process.env
.
Example of running ls -lh /usr
, capturing stdout
, stderr
, and the
exit code:
const { spawn } = require('child_process');
const ls = spawn('ls', ['-lh', '/usr']);
ls.stdout.on('data', (data) => {
console.log(`stdout: ${data}`);
});
ls.stderr.on('data', (data) => {
console.log(`stderr: ${data}`);
});
ls.on('close', (code) => {
console.log(`child process exited with code ${code}`);
});
Example: A very elaborate way to run ps ax | grep ssh
const { spawn } = require('child_process');
const ps = spawn('ps', ['ax']);
const grep = spawn('grep', ['ssh']);
ps.stdout.on('data', (data) => {
grep.stdin.write(data);
});
ps.stderr.on('data', (data) => {
console.log(`ps stderr: ${data}`);
});
ps.on('close', (code) => {
if (code !== 0) {
console.log(`ps process exited with code ${code}`);
}
grep.stdin.end();
});
grep.stdout.on('data', (data) => {
console.log(data.toString());
});
grep.stderr.on('data', (data) => {
console.log(`grep stderr: ${data}`);
});
grep.on('close', (code) => {
if (code !== 0) {
console.log(`grep process exited with code ${code}`);
}
});
Example of checking for failed spawn
:
const { spawn } = require('child_process');
const subprocess = spawn('bad_command');
subprocess.on('error', (err) => {
console.log('Failed to start subprocess.');
});
Note: Certain platforms (macOS, Linux) will use the value of argv[0]
for
the process title while others (Windows, SunOS) will use command
.
Note: Node.js currently overwrites argv[0]
with process.execPath
on
startup, so process.argv[0]
in a Node.js child process will not match the
argv0
parameter passed to spawn
from the parent, retrieve it with the
process.argv0
property instead.
options.detached#
On Windows, setting options.detached
to true
makes it possible for the
child process to continue running after the parent exits. The child will have
its own console window. Once enabled for a child process, it cannot be
disabled.
On non-Windows platforms, if options.detached
is set to true
, the child
process will be made the leader of a new process group and session. Note that
child processes may continue running after the parent exits regardless of
whether they are detached or not. See setsid(2) for more information.
By default, the parent will wait for the detached child to exit. To prevent
the parent from waiting for a given subprocess
, use the subprocess.unref()
method. Doing so will cause the parent's event loop to not include the child in
its reference count, allowing the parent to exit independently of the child,
unless there is an established IPC channel between the child and parent.
When using the detached
option to start a long-running process, the process
will not stay running in the background after the parent exits unless it is
provided with a stdio
configuration that is not connected to the parent.
If the parent's stdio
is inherited, the child will remain attached to the
controlling terminal.
Example of a long-running process, by detaching and also ignoring its parent
stdio
file descriptors, in order to ignore the parent's termination:
const { spawn } = require('child_process');
const subprocess = spawn(process.argv[0], ['child_program.js'], {
detached: true,
stdio: 'ignore'
});
subprocess.unref();
Alternatively one can redirect the child process' output into files:
const fs = require('fs');
const { spawn } = require('child_process');
const out = fs.openSync('./out.log', 'a');
const err = fs.openSync('./out.log', 'a');
const subprocess = spawn('prg', [], {
detached: true,
stdio: [ 'ignore', out, err ]
});
subprocess.unref();
options.stdio#
The options.stdio
option is used to configure the pipes that are established
between the parent and child process. By default, the child's stdin, stdout,
and stderr are redirected to corresponding subprocess.stdin
,
subprocess.stdout
, and subprocess.stderr
streams on the
ChildProcess
object. This is equivalent to setting the options.stdio
equal to ['pipe', 'pipe', 'pipe']
.
For convenience, options.stdio
may be one of the following strings:
'pipe'
- equivalent to['pipe', 'pipe', 'pipe']
(the default)'ignore'
- equivalent to['ignore', 'ignore', 'ignore']
'inherit'
- equivalent to[process.stdin, process.stdout, process.stderr]
or[0,1,2]
Otherwise, the value of options.stdio
is an array where each index corresponds
to an fd in the child. The fds 0, 1, and 2 correspond to stdin, stdout,
and stderr, respectively. Additional fds can be specified to create additional
pipes between the parent and child. The value is one of the following:
'pipe'
- Create a pipe between the child process and the parent process. The parent end of the pipe is exposed to the parent as a property on thechild_process
object assubprocess.stdio[fd]
. Pipes created for fds 0 - 2 are also available assubprocess.stdin
,subprocess.stdout
andsubprocess.stderr
, respectively.'ipc'
- Create an IPC channel for passing messages/file descriptors between parent and child. AChildProcess
may have at most one IPC stdio file descriptor. Setting this option enables thesubprocess.send()
method. If the child writes JSON messages to this file descriptor, thesubprocess.on('message')
event handler will be triggered in the parent. If the child is a Node.js process, the presence of an IPC channel will enableprocess.send()
,process.disconnect()
,process.on('disconnect')
, andprocess.on('message')
within the child.'ignore'
- Instructs Node.js to ignore the fd in the child. While Node.js will always open fds 0 - 2 for the processes it spawns, setting the fd to'ignore'
will cause Node.js to open/dev/null
and attach it to the child's fd.-
<Stream> object - Share a readable or writable stream that refers to a tty,
file, socket, or a pipe with the child process. The stream's underlying
file descriptor is duplicated in the child process to the fd that
corresponds to the index in the
stdio
array. Note that the stream must have an underlying descriptor (file streams do not until the'open'
event has occurred). - Positive integer - The integer value is interpreted as a file descriptor that is is currently open in the parent process. It is shared with the child process, similar to how <Stream> objects can be shared.
null
,undefined
- Use default value. For stdio fds 0, 1 and 2 (in other words, stdin, stdout, and stderr) a pipe is created. For fd 3 and up, the default is'ignore'
.
Example:
const { spawn } = require('child_process');
// Child will use parent's stdios
spawn('prg', [], { stdio: 'inherit' });
// Spawn child sharing only stderr
spawn('prg', [], { stdio: ['pipe', 'pipe', process.stderr] });
// Open an extra fd=4, to interact with programs presenting a
// startd-style interface.
spawn('prg', [], { stdio: ['pipe', null, null, null, 'pipe'] });
It is worth noting that when an IPC channel is established between the
parent and child processes, and the child is a Node.js process, the child
is launched with the IPC channel unreferenced (using unref()
) until the
child registers an event handler for the process.on('disconnect')
event
or the process.on('message')
event. This allows the child to exit
normally without the process being held open by the open IPC channel.
See also: child_process.exec()
and child_process.fork()
Synchronous Process Creation#
The child_process.spawnSync()
, child_process.execSync()
, and
child_process.execFileSync()
methods are synchronous and WILL block
the Node.js event loop, pausing execution of any additional code until the
spawned process exits.
Blocking calls like these are mostly useful for simplifying general purpose scripting tasks and for simplifying the loading/processing of application configuration at startup.
child_process.execFileSync(file[, args][, options])#
file
<string> The name or path of the executable file to run.args
<string[]> List of string arguments.options
<Object>cwd
<string> Current working directory of the child process.input
<string> | <Buffer> | <Uint8Array> The value which will be passed as stdin to the spawned process.- supplying this value will override
stdio[0]
- supplying this value will override
stdio
<string> | <Array> Child's stdio configuration. Default:'pipe'
stderr
by default will be output to the parent process' stderr unlessstdio
is specified
env
<Object> Environment key-value pairs.uid
<number> Sets the user identity of the process (see setuid(2)).gid
<number> Sets the group identity of the process (see setgid(2)).timeout
<number> In milliseconds the maximum amount of time the process is allowed to run. Default:undefined
killSignal
<string> | <integer> The signal value to be used when the spawned process will be killed. Default:'SIGTERM'
maxBuffer
<number> Largest amount of data in bytes allowed on stdout or stderr. Default:200*1024
If exceeded, the child process is terminated. See caveat atmaxBuffer
and Unicode.encoding
<string> The encoding used for all stdio inputs and outputs. Default:'buffer'
windowsHide
<boolean> Hide the subprocess console window that would normally be created on Windows systems. Default:false
.
- Returns: <Buffer> | <string> The stdout from the command.
The child_process.execFileSync()
method is generally identical to
child_process.execFile()
with the exception that the method will not return
until the child process has fully closed. When a timeout has been encountered
and killSignal
is sent, the method won't return until the process has
completely exited.
Note: If the child process intercepts and handles the SIGTERM
signal and
does not exit, the parent process will still wait until the child process has
exited.
If the process times out, or has a non-zero exit code, this method will
throw an Error
that will include the full result of the underlying
child_process.spawnSync()
.
child_process.execSync(command[, options])#
command
<string> The command to run.options
<Object>cwd
<string> Current working directory of the child process.input
<string> | <Buffer> | <Uint8Array> The value which will be passed as stdin to the spawned process.- supplying this value will override
stdio[0]
.
- supplying this value will override
stdio
<string> | <Array> Child's stdio configuration. Default:'pipe'
stderr
by default will be output to the parent process' stderr unlessstdio
is specified
env
<Object> Environment key-value pairs.shell
<string> Shell to execute the command with. Default:'/bin/sh'
on UNIX,process.env.ComSpec
on Windows. See Shell Requirements and Default Windows Shell.uid
<number> Sets the user identity of the process. (See setuid(2)).gid
<number> Sets the group identity of the process. (See setgid(2)).timeout
<number> In milliseconds the maximum amount of time the process is allowed to run. Default:undefined
killSignal
<string> | <integer> The signal value to be used when the spawned process will be killed. Default:'SIGTERM'
maxBuffer
<number> Largest amount of data in bytes allowed on stdout or stderr. Default:200*1024
If exceeded, the child process is terminated. See caveat atmaxBuffer
and Unicode.encoding
<string> The encoding used for all stdio inputs and outputs. Default:'buffer'
windowsHide
<boolean> Hide the subprocess console window that would normally be created on Windows systems. Default:false
.
- Returns: <Buffer> | <string> The stdout from the command.
The child_process.execSync()
method is generally identical to
child_process.exec()
with the exception that the method will not return until
the child process has fully closed. When a timeout has been encountered and
killSignal
is sent, the method won't return until the process has completely
exited. Note that if the child process intercepts and handles the SIGTERM
signal and doesn't exit, the parent process will wait until the child
process has exited.
If the process times out, or has a non-zero exit code, this method will
throw. The Error
object will contain the entire result from
child_process.spawnSync()
Note: Never pass unsanitised user input to this function. Any input containing shell metacharacters may be used to trigger arbitrary command execution.
child_process.spawnSync(command[, args][, options])#
command
<string> The command to run.args
<Array> List of string arguments.options
<Object>cwd
<string> Current working directory of the child process.input
<string> | <Buffer> | <Uint8Array> The value which will be passed as stdin to the spawned process.- supplying this value will override
stdio[0]
.
- supplying this value will override
stdio
<string> | <Array> Child's stdio configuration.env
<Object> Environment key-value pairs.uid
<number> Sets the user identity of the process (see setuid(2)).gid
<number> Sets the group identity of the process (see setgid(2)).timeout
<number> In milliseconds the maximum amount of time the process is allowed to run. Default:undefined
killSignal
<string> | <integer> The signal value to be used when the spawned process will be killed. Default:'SIGTERM'
maxBuffer
<number> Largest amount of data in bytes allowed on stdout or stderr. Default:200*1024
If exceeded, the child process is terminated. See caveat atmaxBuffer
and Unicode.encoding
<string> The encoding used for all stdio inputs and outputs. Default:'buffer'
shell
<boolean> | <string> Iftrue
, runscommand
inside of a shell. Uses'/bin/sh'
on UNIX, andprocess.env.ComSpec
on Windows. A different shell can be specified as a string. See Shell Requirements and Default Windows Shell. Default:false
(no shell).windowsHide
<boolean> Hide the subprocess console window that would normally be created on Windows systems. Default:false
.
- Returns:
<Object>
pid
<number> Pid of the child process.output
<Array> Array of results from stdio output.stdout
<Buffer> | <string> The contents ofoutput[1]
.stderr
<Buffer> | <string> The contents ofoutput[2]
.status
<number> The exit code of the child process.signal
<string> The signal used to kill the child process.error
<Error> The error object if the child process failed or timed out.
The child_process.spawnSync()
method is generally identical to
child_process.spawn()
with the exception that the function will not return
until the child process has fully closed. When a timeout has been encountered
and killSignal
is sent, the method won't return until the process has
completely exited. Note that if the process intercepts and handles the
SIGTERM
signal and doesn't exit, the parent process will wait until the child
process has exited.
Note: If the shell
option is enabled, do not pass unsanitised user input
to this function. Any input containing shell metacharacters may be used to
trigger arbitrary command execution.
Class: ChildProcess#
Instances of the ChildProcess
class are EventEmitters
that represent
spawned child processes.
Instances of ChildProcess
are not intended to be created directly. Rather,
use the child_process.spawn()
, child_process.exec()
,
child_process.execFile()
, or child_process.fork()
methods to create
instances of ChildProcess
.
Event: 'close'#
code
<number> The exit code if the child exited on its own.signal
<string> The signal by which the child process was terminated.
The 'close'
event is emitted when the stdio streams of a child process have
been closed. This is distinct from the 'exit'
event, since multiple
processes might share the same stdio streams.
Event: 'disconnect'#
The 'disconnect'
event is emitted after calling the
subprocess.disconnect()
method in parent process or
process.disconnect()
in child process. After disconnecting it is no longer
possible to send or receive messages, and the subprocess.connected
property is false
.
Event: 'error'#
err
<Error> The error.
The 'error'
event is emitted whenever:
- The process could not be spawned, or
- The process could not be killed, or
- Sending a message to the child process failed.
Note: The 'exit'
event may or may not fire after an error has occurred.
When listening to both the 'exit'
and 'error'
events, it is important
to guard against accidentally invoking handler functions multiple times.
See also subprocess.kill()
and subprocess.send()
.
Event: 'exit'#
code
<number> The exit code if the child exited on its own.signal
<string> The signal by which the child process was terminated.
The 'exit'
event is emitted after the child process ends. If the process
exited, code
is the final exit code of the process, otherwise null
. If the
process terminated due to receipt of a signal, signal
is the string name of
the signal, otherwise null
. One of the two will always be non-null.
Note that when the 'exit'
event is triggered, child process stdio streams
might still be open.
Also, note that Node.js establishes signal handlers for SIGINT
and
SIGTERM
and Node.js processes will not terminate immediately due to receipt
of those signals. Rather, Node.js will perform a sequence of cleanup actions
and then will re-raise the handled signal.
See waitpid(2).
Event: 'message'#
message
<Object> A parsed JSON object or primitive value.sendHandle
<Handle> Anet.Socket
ornet.Server
object, or undefined.
The 'message'
event is triggered when a child process uses process.send()
to send messages.
Note: The message goes through JSON serialization and parsing. The resulting
message might not be the same as what is originally sent. See notes in
the JSON.stringify()
specification.
subprocess.channel#
- <Object> A pipe representing the IPC channel to the child process.
The subprocess.channel
property is a reference to the child's IPC channel. If
no IPC channel currently exists, this property is undefined
.
subprocess.connected#
-
<boolean> Set to
false
aftersubprocess.disconnect()
is called.
The subprocess.connected
property indicates whether it is still possible to
send and receive messages from a child process. When subprocess.connected
is
false
, it is no longer possible to send or receive messages.
subprocess.disconnect()#
Closes the IPC channel between parent and child, allowing the child to exit
gracefully once there are no other connections keeping it alive. After calling
this method the subprocess.connected
and process.connected
properties in
both the parent and child (respectively) will be set to false
, and it will be
no longer possible to pass messages between the processes.
The 'disconnect'
event will be emitted when there are no messages in the
process of being received. This will most often be triggered immediately after
calling subprocess.disconnect()
.
Note that when the child process is a Node.js instance (e.g. spawned using
child_process.fork()
), the process.disconnect()
method can be invoked
within the child process to close the IPC channel as well.
subprocess.kill([signal])#
signal
<string>
The subprocess.kill()
methods sends a signal to the child process. If no
argument is given, the process will be sent the 'SIGTERM'
signal. See
signal(7) for a list of available signals.
const { spawn } = require('child_process');
const grep = spawn('grep', ['ssh']);
grep.on('close', (code, signal) => {
console.log(
`child process terminated due to receipt of signal ${signal}`);
});
// Send SIGHUP to process
grep.kill('SIGHUP');
The ChildProcess
object may emit an 'error'
event if the signal cannot be
delivered. Sending a signal to a child process that has already exited is not
an error but may have unforeseen consequences. Specifically, if the process
identifier (PID) has been reassigned to another process, the signal will be
delivered to that process instead which can have unexpected results.
Note that while the function is called kill
, the signal delivered to the
child process may not actually terminate the process.
See kill(2) for reference.
Also note: on Linux, child processes of child processes will not be terminated
when attempting to kill their parent. This is likely to happen when running a
new process in a shell or with use of the shell
option of ChildProcess
, such
as in this example:
'use strict';
const { spawn } = require('child_process');
const subprocess = spawn(
'sh',
[
'-c',
`node -e "setInterval(() => {
console.log(process.pid, 'is alive')
}, 500);"`
], {
stdio: ['inherit', 'inherit', 'inherit']
}
);
setTimeout(() => {
subprocess.kill(); // does not terminate the node process in the shell
}, 2000);
subprocess.killed#
-
<boolean> Set to
true
aftersubprocess.kill()
is used to successfully terminate the child process.
The subprocess.killed
property indicates whether the child process was
successfully terminated using subprocess.kill()
.
subprocess.pid#
- <number> Integer
Returns the process identifier (PID) of the child process.
Example:
const { spawn } = require('child_process');
const grep = spawn('grep', ['ssh']);
console.log(`Spawned child pid: ${grep.pid}`);
grep.stdin.end();
subprocess.send(message[, sendHandle[, options]][, callback])#
message
<Object>sendHandle
<Handle>options
<Object>callback
<Function>- Returns: <boolean>
When an IPC channel has been established between the parent and child (
i.e. when using child_process.fork()
), the subprocess.send()
method can
be used to send messages to the child process. When the child process is a
Node.js instance, these messages can be received via the
process.on('message')
event.
Note: The message goes through JSON serialization and parsing. The resulting
message might not be the same as what is originally sent. See notes in
the JSON.stringify()
specification.
For example, in the parent script:
const cp = require('child_process');
const n = cp.fork(`${__dirname}/sub.js`);
n.on('message', (m) => {
console.log('PARENT got message:', m);
});
// Causes the child to print: CHILD got message: { hello: 'world' }
n.send({ hello: 'world' });
And then the child script, 'sub.js'
might look like this:
process.on('message', (m) => {
console.log('CHILD got message:', m);
});
// Causes the parent to print: PARENT got message: { foo: 'bar', baz: null }
process.send({ foo: 'bar', baz: NaN });
Child Node.js processes will have a process.send()
method of their own that
allows the child to send messages back to the parent.
There is a special case when sending a {cmd: 'NODE_foo'}
message. All messages
containing a NODE_
prefix in its cmd
property are considered to be reserved
for use within Node.js core and will not be emitted in the child's
process.on('message')
event. Rather, such messages are emitted using the
process.on('internalMessage')
event and are consumed internally by Node.js.
Applications should avoid using such messages or listening for
'internalMessage'
events as it is subject to change without notice.
The optional sendHandle
argument that may be passed to subprocess.send()
is
for passing a TCP server or socket object to the child process. The child will
receive the object as the second argument passed to the callback function
registered on the process.on('message')
event. Any data that is received
and buffered in the socket will not be sent to the child.
The options
argument, if present, is an object used to parameterize the
sending of certain types of handles. options
supports the following
properties:
keepOpen
- A Boolean value that can be used when passing instances ofnet.Socket
. Whentrue
, the socket is kept open in the sending process. Defaults tofalse
.
The optional callback
is a function that is invoked after the message is
sent but before the child may have received it. The function is called with a
single argument: null
on success, or an Error
object on failure.
If no callback
function is provided and the message cannot be sent, an
'error'
event will be emitted by the ChildProcess
object. This can happen,
for instance, when the child process has already exited.
subprocess.send()
will return false
if the channel has closed or when the
backlog of unsent messages exceeds a threshold that makes it unwise to send
more. Otherwise, the method returns true
. The callback
function can be
used to implement flow control.
Example: sending a server object#
The sendHandle
argument can be used, for instance, to pass the handle of
a TCP server object to the child process as illustrated in the example below:
const subprocess = require('child_process').fork('subprocess.js');
// Open up the server object and send the handle.
const server = require('net').createServer();
server.on('connection', (socket) => {
socket.end('handled by parent');
});
server.listen(1337, () => {
subprocess.send('server', server);
});
The child would then receive the server object as:
process.on('message', (m, server) => {
if (m === 'server') {
server.on('connection', (socket) => {
socket.end('handled by child');
});
}
});
Once the server is now shared between the parent and child, some connections can be handled by the parent and some by the child.
While the example above uses a server created using the net
module, dgram
module servers use exactly the same workflow with the exceptions of listening on
a 'message'
event instead of 'connection'
and using server.bind()
instead of
server.listen()
. This is, however, currently only supported on UNIX platforms.
Example: sending a socket object#
Similarly, the sendHandler
argument can be used to pass the handle of a
socket to the child process. The example below spawns two children that each
handle connections with "normal" or "special" priority:
const { fork } = require('child_process');
const normal = fork('subprocess.js', ['normal']);
const special = fork('subprocess.js', ['special']);
// Open up the server and send sockets to child. Use pauseOnConnect to prevent
// the sockets from being read before they are sent to the child process.
const server = require('net').createServer({ pauseOnConnect: true });
server.on('connection', (socket) => {
// If this is special priority
if (socket.remoteAddress === '74.125.127.100') {
special.send('socket', socket);
return;
}
// This is normal priority
normal.send('socket', socket);
});
server.listen(1337);
The subprocess.js
would receive the socket handle as the second argument
passed to the event callback function:
process.on('message', (m, socket) => {
if (m === 'socket') {
if (socket) {
// Check that the client socket exists.
// It is possible for the socket to be closed between the time it is
// sent and the time it is received in the child process.
socket.end(`Request handled with ${process.argv[2]} priority`);
}
}
});
Once a socket has been passed to a child, the parent is no longer capable of
tracking when the socket is destroyed. To indicate this, the .connections
property becomes null
. It is recommended not to use .maxConnections
when
this occurs.
It is also recommended that any 'message'
handlers in the child process
verify that socket
exists, as the connection may have been closed during the
time it takes to send the connection to the child.
subprocess.stderr#
A Readable Stream
that represents the child process's stderr
.
If the child was spawned with stdio[2]
set to anything other than 'pipe'
,
then this will be null
.
subprocess.stderr
is an alias for subprocess.stdio[2]
. Both properties will
refer to the same value.
subprocess.stdin#
A Writable Stream
that represents the child process's stdin
.
Note that if a child process waits to read all of its input, the child will not
continue until this stream has been closed via end()
.
If the child was spawned with stdio[0]
set to anything other than 'pipe'
,
then this will be null
.
subprocess.stdin
is an alias for subprocess.stdio[0]
. Both properties will
refer to the same value.
subprocess.stdio#
A sparse array of pipes to the child process, corresponding with positions in
the stdio
option passed to child_process.spawn()
that have been set
to the value 'pipe'
. Note that subprocess.stdio[0]
, subprocess.stdio[1]
,
and subprocess.stdio[2]
are also available as subprocess.stdin
,
subprocess.stdout
, and subprocess.stderr
, respectively.
In the following example, only the child's fd 1
(stdout) is configured as a
pipe, so only the parent's subprocess.stdio[1]
is a stream, all other values
in the array are null
.
const assert = require('assert');
const fs = require('fs');
const child_process = require('child_process');
const subprocess = child_process.spawn('ls', {
stdio: [
0, // Use parent's stdin for child
'pipe', // Pipe child's stdout to parent
fs.openSync('err.out', 'w') // Direct child's stderr to a file
]
});
assert.strictEqual(subprocess.stdio[0], null);
assert.strictEqual(subprocess.stdio[0], subprocess.stdin);
assert(subprocess.stdout);
assert.strictEqual(subprocess.stdio[1], subprocess.stdout);
assert.strictEqual(subprocess.stdio[2], null);
assert.strictEqual(subprocess.stdio[2], subprocess.stderr);
subprocess.stdout#
A Readable Stream
that represents the child process's stdout
.
If the child was spawned with stdio[1]
set to anything other than 'pipe'
,
then this will be null
.
subprocess.stdout
is an alias for subprocess.stdio[1]
. Both properties will
refer to the same value.
maxBuffer
and Unicode#
The maxBuffer
option specifies the largest number of bytes allowed on stdout
or stderr
. If this value is exceeded, then the child process is terminated.
This impacts output that includes multibyte character encodings such as UTF-8 or
UTF-16. For instance, console.log('中文测试')
will send 13 UTF-8 encoded bytes
to stdout
although there are only 4 characters.
Shell Requirements#
The shell should understand the -c
switch on UNIX or /d /s /c
on Windows.
On Windows, command line parsing should be compatible with 'cmd.exe'
.
Default Windows Shell#
Although Microsoft specifies %COMSPEC%
must contain the path to
'cmd.exe'
in the root environment, child processes are not always subject to
the same requirement. Thus, in child_process
functions where a shell can be
spawned, 'cmd.exe'
is used as a fallback if process.env.ComSpec
is
unavailable.